Molecular and physiological approaches to maize improvement for drought tolerance.
نویسندگان
چکیده
Average maize yields have increased steadily over the years in the USA and yet the variations in harvestable yield have also markedly increased. Much of the increase in yield variability can be attributed to (1) varying environmental stress conditions; (2) improved nitrogen inputs and better weed control; and (3) continuing sensitivity of different maize lines to the variation in input supply, especially rainfall. Drought stress alone can account for a significant percentage of average yield losses. Yet despite variable environments, new commercially available maize hybrids continue to be produced each year with ever-increasing harvestable yield. Since many factors contribute to high plant performance under water deficits, efforts are being made to elucidate the nature of water-stress tolerance in an attempt to improve maize hybrids further. Such factors include better partitioning of biomass to the developing ear resulting in faster spikelet growth and improved reproductive success. An emphasis on faster spikelet growth rate may result in a reduction in the number of spikelets formed on the ear that facilitates overall seed set by reducing water and carbon constraints per spikelet. To understand the molecular mechanisms for drought tolerance in improved maize lines better, a variety of genomic tools are being used. Newer molecular markers and comprehensive gene expression profiling methods provide opportunities to direct the continued breeding of genotypes that provide stable grain yield under widely varied environmental conditions.
منابع مشابه
Marker assisted selection for the improvement of Sarjoo-52 for drought tolerance by introgression of MQTL1.1 from the source Nagina–22
Literatures have reported that a lot of drought related genes were cloned and individual gene showed positive effects under controlled stress experiments, but were not much effective in the field. Although, the progresses by conventional breeding approaches were achievable as some drought varieties have been released to the farmers in the recent years but this is not adequate to cope up with th...
متن کاملMorpho-Physiological Characterization Related to Drought Tolerance of Common Bean (Phaseolus Vulgaris L.) Genotypes
Drought is one of the limiting factor in common bean, development of common bean varieties that adapted to drought situations is the main focus for improving food crops. In this study, 25 genotypes of common beans (Phaseolus vulgaris L.) were grown under drought stress and non-stress conditions. The field work was conducted at Melkassa Agricultural Research Center during the off-season that lai...
متن کاملMorpho-Physiological Characterization Related to Drought Tolerance of Common Bean (Phaseolus Vulgaris L.) Genotypes
Drought is one of the limiting factor in common bean, development of common bean varieties that adapted to drought situations is the main focus for improving food crops. In this study, 25 genotypes of common beans (Phaseolus vulgaris L.) were grown under drought stress and non-stress conditions. The field work was conducted at Melkassa Agricultural Research Center during the off-season that lai...
متن کاملAssessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes
Salt stress is one of the major constraints for wheat cultivation inIranand leads to a considerable loss in crop yield each year. In high salinity soils, the reduced osmotic potential of soil solutes may cause physiological drought. In this study the salt tolerance of different drought-tolerant bread wheat genotypes were studied by examining various agronomic and physiological traits, inclu...
متن کاملGenome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance
Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 53 366 شماره
صفحات -
تاریخ انتشار 2002